Hacker Newsnew | past | comments | ask | show | jobs | submitlogin

There are 2 square roots of 9, they are 3 and -3. Likewise there are two square roots of -1 which are i and -i. How are people trying to argue that there are two different things called i? We don't ask which 3 right? My argument is that there is only 1 value of i, and the distinction between -i and i is the same as (-1)i and (1)i, which is the same as -3 vs 3. There is only one i. If there are in fact two i's then there are 4 square roots of -1.




Notably, the real numbers are not symmetrical in this way: there are two square roots of 1, but one of them is equal to it and the other is not. (positive) 1 is special because it's the multiplicative identity, whereas i (and -i) have no distinguishing features: it doesn't matter which one you call i and which one you call -i: if you define j = -i, you'll find that anything you can say about i can also be shown to be true about j. That doesn't mean they're equal, just that they don't have any mathematical properties that let you say which one is which.

Your view of the complex numbers is the rigid one. Now suppose you are given a set with two binary operations defined in such a way that the operations behave well with each other. That is you have a ring. Suppose that by some process you are able to conclude that your ring is algebraically equivalent to the complex numbers. How do you know which of your elements in your ring is “i”? There will be two elements that behave like “i” in all algebraic aspects. So you can’t say that this one is “i” and this one is “-i” in a non arbitrary fashion.



Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: